Информационная значимость применения методики оценки загрязнения атмосферного воздуха взвешенными веществами и сажей по их осадку в снежном покрове в условиях территорий Арктики

Новикова И.И., Рапута В.Ф., Мингазов И.Ф.

1. Объекты и методы экспериментальных исследований

а) Химические и металлургические заводы

б) Тепловые электростанции

в) Нефтегазовые факела

г) Крупные автомагистрали

д) Городские территории и их окрестности

<u>Методы химико-аналитических исследований</u>

Схема определения ПАУ в снеге

Полициклические ароматические углеводороды (метод хромато-масс-спектрометрии)

Соединение	Молекулярная масса	Молекулярная формула	Бензпиреновый эквивалент	
Аценафтилен	152	C ₁₂ H ₈	0,001	
Аценафтен	154	C ₁₂ H ₁₀	0,001	
Нафталин	128	C ₁₀ H ₈	0,001	
Флуорен	166	C ₁₃ H ₁₀	0,001	
Фенантрен	178	C ₁₄ H ₁₀	0,001	
Антрацен	178	C ₁₄ H ₁₀	0,01	
Флуорантен	202	C ₁₆ H ₁₀	0,001	
Пирен	202	C ₁₆ H ₁₀	0,001	
Хризен	228	C ₁₈ H ₁₂	0,01	
Бенз(b)флуорантен	252	C ₂₀ H ₁₂	0,1	
Бенз(k)флуорантен	252	C ₂₀ H ₁₂	0,1	
Бенз(а)пирен	252	C ₂₀ H ₁₂	1	
Бенз(g,h,i)перилен	276	C ₂₂ H ₁₂	0,01	
Индено(1,2,3-cd)пирен	276	C ₂₂ H ₁₂	0,1	
Дибенз(a,h)антрацен	278	C ₂₂ H ₁₄	1	

2. Мониторинг выпадений взвешенных веществ на территориях Западной Сибири <u>Новосибирский электродный завод</u>

Зимний и летний снимки окрестностей НЭЗ

Рис. 1. Схема отбора снеговых проб в районе НЭЗ. ▲ - основной источник выброса бенз(а)пирена

Нефтегазовые факела Приобского месторождения

Рис. 2. Схемы отбора проб снега (Приобское нефтяное месторождение ХМАО, апрель 2004 г).

Отбор проб снега

ТЭЦ – 3 г. Барнаула

Рис. 3. Схема маршрутного отбора проб снега

3. Модели реконструкции полей аэрозольных выпадений примесей

Базовая модель переноса примеси

$$u(z)\frac{\partial q}{\partial x} - w\frac{\partial q}{\partial z} = \frac{\partial}{\partial z}k(z)\frac{\partial q}{\partial z} + \frac{\partial}{\partial y}v(z)\frac{\partial q}{\partial y}, \quad (1)$$

$$k\frac{\partial q}{\partial z} + wq\Big|_{z=0} = 0, \quad q\Big|_{|\vec{x}| \to \infty} \to 0, \quad q\Big|_{x=0} = M\delta(y)\delta(z-H), \quad (2)$$

$$u(z) = u_1\left(\frac{z}{z_1}\right)^n, \quad k(z) = k_1\left(\frac{z}{z_1}\right)^m, \quad v(z) = k_0u(z)$$
 (3)

Модели оценивания длительного загрязнения

$$\overline{q}_{\overline{\tau}} = \int_{0}^{\infty} q \rho_{\tau, \overline{\tau}}(q) dq$$

Монодисперсный аэрозоль

$$\overline{q}_{w}(r,\varphi) = \theta_{1w} G(\varphi + 180^{\circ}) r^{\theta_{3w}} e^{\frac{-\theta_{2}}{r}}$$

(4)

(5)

Полидисперсный случай

$$p(r) == \frac{\theta_1}{r^2} \exp(-\frac{c}{r}) \int_0^\infty \frac{\omega^{\theta_2} \exp(-\theta_3 \omega)}{\Gamma(1+\omega)} \left(\frac{c}{r}\right)^\omega d\omega \quad , \tag{6}$$

$$\theta_{1} = \frac{M R^{m+2}}{(1+n)a \Gamma(1+m)} , \quad \theta_{2} = m+1 , \quad \theta_{3} = a(1+n)k_{1} .$$

$$J_{N}\left(\vec{\theta}\right) = \sum_{k=1}^{N} \sigma_{k}^{-2} \left[s_{k} - q_{\pi}\left(\vec{x}_{k}, \vec{\theta}\right)\right]^{2}$$

$$s_{k} = q \ \left(\vec{x}_{k}, \vec{\theta}\right) + \xi_{k}$$
(8)

Оценивание регионального загрязнения

Точечный источник

$$\bar{q}(r,\varphi) = \frac{\lambda \cdot Mg(\varphi)}{2\pi r} \iint_{\Omega} \frac{B(u',h')}{u' \cdot h'} d\Omega = \frac{\theta' \cdot g(\varphi)}{r}$$
(9)

$$\theta' = \frac{\lambda \cdot M}{2\pi} \iint_{\Omega} \frac{B(u',h')}{u' \cdot h'} d\Omega$$

(10)

Площадной источник

$$Q(x,y) = \frac{1}{2\pi u H} \iint_{S} \frac{m(\xi,\eta)\zeta(\varphi)}{d} d\xi d\eta ,$$
(11)

$$Q(x, y) = \theta \cdot P\left(\frac{y - \mu}{x - \lambda} + 180^{\circ} \right) / \sqrt{(x - \lambda)^{2} + (y - \mu)^{2}}$$

$$\theta = M/2\pi u H , \qquad M = \iint_{S} m(\xi, \eta) d\xi d\eta$$
(12)

4. Численное восстановление полей выпадений ПАУ

Рис. 4. Восстановленные концентрации бенз(а)пирена (нг/кг) в снеге на основе модели (5) в восточном (а) и северо-восточном (б) направлениях от трубы ТЭЦ – 3 г. Барнаула. • – опорные точки, • – контрольные точки наблюдений

Рис. 5. Восстановленное поле концентрации бенз(а)пирена (нг/кг) от **ТЭЦ-3** за зимний сезон 2010/11 г.

Рис. 6. Реконструкция поля выпадений суммы ПАУ (нг/л) в районе Приобского месторождения ХМАО (2004 г.)

Рис. 7. Восстановленные в снеге по маршрутам пробоотбора выпадения суммы ПАУ

Факела Приразломного месторождения ХМАО (2006 г.)

Рис. 8. Измеренные и восстановленные на основе моделей оценивания концентрации в снеге НУ, угольной кислоты и общего углерода в хвое сосны (фон 48 %)

Рис. 9. Восстановленная среднезимняя концентрация примеси по данным спутниковых измерений **теплового излучения** нефтегазовых факелов Ханты-Мансийского автономного округа

Региональное загрязнение ПАУ окрестностей Новосибирска

Рис. 10. Схема отбора снеговых проб. Восстановленная концентрация флуорена, фенантрена в направлении на северо-восток

р. Обь — Железная дорога Точки опробования Населенные пүнкты Концентрация бенз(а)пирена в снеговом покрове, нг/л

Рис. 11. Восстановленное поле аэрозольных выпадений бенз(а)пирена (нг/л) в окрестностях Новосибирска

5. Сопряжённые исследования загрязнения ПАУ снежного покрова и воздуха городов Сибири

Рис. 12. Схема размещения постов на территории г. Новосибирска. Линейнокорреляционная зависимость между бенз(а)пиреном в снеге и бенз(а)пиреном в воздухе в зимних сезонах 2010 – 2012 г.г.

Рис. 13. Линейно-корреляционная зависимость между содержанием бенз(а)пирена в снеге (нг/л) и сажей в воздухе (мг/м3)

Рис. 14. Схема размещения постов на территории г. Кемерово. Корреляционная связь между бенз(а)пиреном в снеге и сажей, бенз(а)пиреном в воздухе

Рис. 15. Корреляционная связь между осадком – бенз(а)пиреном и суммой ПАУ в зимних сезонах 2008-2011 гг. на постах г. Кемерово

Рис. 16. Схема размещения постов на территории г. Барнаула. Корреляционная связь между бенз(а)пиреном в снеге и сажей, бенз(а)пиреном в воздухе

Рис. 17. Схема размещения постов на территории г. Новосибирска. Линейно-корреляционная зависимость между бенз(а)пиреном в снеге и бенз(а)пиреном в воздухе в зимних сезонах 2009 – 2011 г.г.

6. Наземные и спутниковые наблюдения. Функцион. связи

Рис. 18. Функциональная связь между интенсивностью изменения тонов серого цвета и полями выпадения БП от НЭЗ в направлениях II – IV

Рис. 19. Функциональная связь между интенсивностью изменения тонов серого цвета (снимок 31.03.2009г.) и полем региональных выпадений пыли от высотных труб обжигового цеха НЭЗ в направлении

Рис. 21. Спутниковый снимок Норильска (а). Изменения тонов серого цвета снежного покрова в юго-восточном направлении выноса пыли от асфальто-бетонного завода (б). Функциональная связь (в)

Рис. 22. Спутниковый снимок г. **Кемерово** от 26.03.2006 г.

Рис. 23. Корреляционная связь между тонами серого цвета и осадком : 2008 / 09 гг.,2009 / 10 гг.,2010 / 11 гг.

Рис. 24. Корреляционная связь между тонами серого цвета – бенз(а)пиреном и суммой ПАУ в зимних сезонах 2008-2011 гг. на постах г. Кемерово

7. Загрязнение воздуха ПАУ и онкозаболеваемость городского населения

Рис. 25. Зависимость числа случаев (N) заболеваемости **3H** от ИЗА (на 1000 жит.) за 1990 г. (а) и 1986-1990 гг. (б)

N зн = 1.8+0.11 ИЗА N min = 0.14 ИЗА (12)

OP = 0.39 + 0.07 ИЗА (15)

R – индекс риска, **X** – средняя концентрация в городе

Np = R * X (14)

Рис. 26. Число случаев (N) 3H в крупнейших городах России (1990 г.)

Рис. 27. Связь между ИЗА и оценками риска ОР за 1988, 1990 гг.

Оценки рисков

Для оценки ингаляционных канцерогенных рисков здоровью населения используется модель

$$Risk = C_{cp.} \bullet SF \bullet 20/70 \tag{16}$$

- где **С_{ср.}** среднегодовая концентрация канцерогенного вещества (*мг/м*-³)
- **SF** фактор потенциала канцерогенного эффекта при ингаляционном пути поступления,
- **20 м³·сут⁻¹** средний суточный объем дыхания
- 70 КГ средняя масса тела взрослого человека. Для
- бенз(а)пирена *SF* = 6,11.

Таблица 1.

Оценки канцерогенных рисков по данным о содержании Б(а)П в образцах снега на постах г. Новосибирска, 2011 г.

№ точки	4	5	6	7	8	9	10	11	12	13	14	
отбора												
Б(а)П в снеге,	52	24	89	33	215	66	62	4	23	13	23	
нг/л								7				
Расчет Б(а)П в	2,6	1,	4,	1,	10,8	3,	3,	2,	1,	0,7	1,2	Средний
возд.		2	5	7		3	0	4	2			риск
Risk*10⁶	4,6	2,	7,	3,	18,8	5,	5,	4,	2,	1,2	2,1	5,2
		1	8	0		8	4	2	1			

Таблица 2.

Оценки канцерогенных рисков по данным о содержании Б(а)П в образцах снега на постах городов юга Западной Сибири, 2011 г.

Город	Население, тыс.	Доп.			
	чел.*	канцерогенный			
		риск·10 ⁶			
Новосибирск	1474	5,17			
Кемерово	533	6,44			
Барнаул	612	12,04			

	<u>Измерения</u>	<u>Расчёт</u>
Пост 1	61	64
Пост 13	24	56
Пост 18	89	89
Пост 19	47	38
Пост 21	215	64
Пост 24	33	33
Пост 25	23	23
Пост 26	65	65
Пост 54	52	54

Рис. 28. Интерполяция поля бенз(а)пирена по 4 постам (№№ 18, 24, 25, 26)

	Пост 1	Пост 2	Пост 8	Пост 10	Пост 17	Пост 19	Пост 20	Пост 26
<u>Измерения</u>	76	174	43	167	80	16	38	14
<u>Расчёт</u>	89	174	47	137	147	29	38	14

Рис. 29. Интерполяция по 2, 20, 26 постам (бенз(а)пирен)

- с использованием асимптотических методов разработаны модели реконструкции локального и регионального загрязнения территорий точечными и площадными источниками;
- проведена апробация построенных моделей на данных натурных исследований загрязнения снежного покрова взвешенными веществами, ПАУ в окрестностях ряда городов и промышленных площадок Западной Сибири;
- установлены закономерности количественного распределения пыли, ПАУ, в окрестностях Новосибирска, Кемерово, Барнаула, Томска. Определена степень дополнительной антропогенной нагрузки ПАУ на окружающих их территории.
- выявлены устойчивые количественные закономерности между полями выпадения пыли, бенз(а)пирена и интенсивностью изменения тонов серого цвета на космических снимках в окрестностях ряда крупных промышленных источников Западной и Восточной Сибири;

- установлено, что для загрязнений регионального масштаба между этими полями характерна функциональная связь, выражаемая логарифмической зависимостью; для полей локального загрязнения в большей степени соответствует степенная и линейная связь;
- с использованием измерений на стационарных постах контроля загрязнения атмосферы Новосибирска, Кемерово, Барнаула, Томска выявлены количественные закономерности распределения в системе воздух – снег, ПАУ в снеговом покрове и сажи, бенз(а)пирена в атмосферном воздухе;
- в условиях Сибири снеговой покров является вполне надежным индикатором загрязнения атмосферы ПАУ. Он может быть использован для оперативного выявления зон высокого загрязнения территорий города и оценок канцерогенного риска здоровью населения;
- результаты проведённых исследований позволяют существенно оптимизировать выполнение наземного мониторинга загрязнения ПАУ окрестностей промышленных предприятий в зимний период времени.

Спасибо

за внимание